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(and beyond)



Disclaimers and Thanks To…
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• Disclaimers
– I am not an expert on much of what I will talk about
– This talk covers the accelerator side, not the user science

• Thanks to: Anna Alexander, Heather Andrews, Petr Anisimov, Yuri Batygin, 
Jen Bohon, Cynthia Buechler, Greg Dale, Eric Dors, Ilija Draganic, Dmitry 
Gorelov, Mark Gulley, John Harris (AFRL) Michael Holloway, Frank Krawczyk, 
Sergey Kurennoy, Jean-Marie Lauenstein (GSFC), Rod McCrady, Nathan 
Moody, Stephen Milton, Kimberley Nichols, Dinh Nguyen, Vitaly Pavlenko, 
Louis Peterson, Geoff Reeves, Gary Rouleau, Prabir Roy, Alexander 
Scheinker, Evgenya Simakov, John Smedley, Tsuyoshi Takima, Charles 
Taylor, Janardan Upadhyay, Nikolai Yampolsy…

• Collaborations with ANL, BNL, Goddard SFC, LLNL, Physical Sciences Inc., 
SwissFEL, SLAC, SNS, UCLA….

... And to those not on the above, my apologies for the oversight!



Outline of the Talk
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• LANSCE: Present

• LANSCE:  Futures (potential)

• Accelerator R&D at LANSCE (and a bit beyond)
– Optimization & Machine Learning
– PSR Short-Pulse Generation
– Ion Source Upgrade, RFQ
– H- Photocathode
– Diamond Cathodes
– High-Gradient Accelerator Structures
– SRF Materials
– X-FELs
– DARHT and SCORPIUS
– Accelerators in Space
– Nuclear Battery

• Conclusions



LANSCE Present
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7 “beam termini” – where LANSCE can provide beam
• 3 neutron target stations (Lujan Center, WNR, Ultra-Cold Neutrons)
• 1 proton radiography (pRad) station
• 1 isotope production facility
• 2 “direct beam access” – 800 MeV “Blue Room” and 750 keV H+



LANSCE Present
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LANSCE Present:  Upgrades
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• Broad control-system upgrade – full EPICS implementation
• Targeted diagnostics improvements:  pRad and UCN transport lines

• Improve existing 
diagnostics 

• Improve BPPM 
coverage

• Automate trajectory 
control

• Fast station switching 
between pRad and UCN



LANSCE Futures
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• Broad-brush  
– increased reliability and performance 

for existing users
– additional beam termini for new user 

communities

Power Energy Stations Species1

Sources   

Structures    

Frequency  

Beamlines   

Species 

Delivered beam:  more…
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M
od
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ca
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1 e.g. electrons, photons



LANSCE Futures Deep Dive Identified…
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• Dual-Axis pRad
• Area A Materials Survivability Laboratory

– Space Radiation Facility
– Enhanced Isotope Production
– Materials Aging
– Chromatic Corrected pRad

• Improved high energy 
neutron radiography

• Improved neutron 
diffraction

• Improved accelerator 
reliability & performance



A potential path…
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201 805805

PSR

CW
Keep 
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800 MeV
1mA

Phases 1, 2, and 3 implemented
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H-
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100 MeV

300 MeV
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CW
Shown 
removed
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system

Updated 
Version

Shield Wall Boundary
805 Injector System

• Phase 2: Replace CW and DTL
• High current H- and H+ sources 

feeding RFQs
• High gradient 805 MHz Injector

• Installed adjacent to existing 
DTL and made functional 
prior to placing into operation

• 100 MeV to 300 MeV capable 
front end system

• Phase 3: Replace PSR
• Large dynamic aperture
• Large energy acceptance
• Defined loss point
• Rapidly serviceable

• Allows shortening 
maintenance period

• 4M on, 2 M off cycle
• > 3x current capability

805 linac

Tunnel 
Cross 
Section

Slide courtesy S. Milton



…leading towards…
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201 805805

PSR

CW
Keep 
Optional

H+

DTL

IPF

CCL

100 MeV – 300 MeV

pRad UCN

To Area A

NSC

WNR

20 GeV 
Protons and 
25 GeV e–

to Area A

Phases 1 – 5 implemented
(1L High 
Power 
Version)

H-

H+ RFQ

RFQ

100 MeV

300 MeV

Operational as 
stand alone 
system

Updated 
Version

Shield Wall Boundary
805 Injector System

• Phase 5: 25 GeV e– FEL Driver
• High Gradient C-Band System

• High shunt impedance
• Beta = 1
• Stacked above pRad Machine
• Waveguide switching to 

”existing” C-band power
• Multi Hz, variable pulse format 

over 1 ms

800 MeV
1mA

25 GeV C-band e–

linac FEL Driver 
stacked above 
proton linac

• FEL
• ~ 80 m undulator system in Area A
• >50 keV fully coherent ultrashort
• Building extension required for experimental hall

High brightness 
e– injector

805 linac

20 GeV 
protons

25 GeV 
electrons

Tunnel 
Cross 
Section

Slide courtesy S. Milton



… and, perhaps, to something like MORD0R
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Neutron Ball allows direct neutron reactions with 
resulting isotope in exited state even at lower beam 
energies

Thanks to Dmitry Gorelov

OLIS
ECR

• Nuclear physics goals:
– Nuclear Reactions for Weapons Science
– Nuclear structure
– Astrophysics
– Material science and other applied 

physics
• In the range of energies below 2 

MeV/u:
– ⁵⁹Fe(n,γ)→…
– Isomers of Ir(n,γ)→…

• In the range ~4-10 MeV/u
– ²³⁹Pu(n,2n)→…
– ⁸⁷⁻⁸⁸Y(n,2n)→…
– Isomers of Ir(n,2n)→…



But, what else is going on at LANSCE?
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• Optimization & Machine Learning
• PSR Short-Pulse Generation
• Ion Source Upgrade, RFQ
• H- Photocathode
• Diamond Cathodes
• High-Gradient Accelerator Structures
• SRF Materials
• X-FELs
• DARHT and SCORPIUS
• Accelerators in Space
• Nuclear Battery



Optimization and Machine Learning:  Noisy Systems
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Slide courtesy A. Scheinker
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A. Scheinker et al. "Model-independent tuning for 
maximizing free electron laser pulse energy." Physical 
Review Accelerators and Beams 22.8 (2019): 082802.



Optimization and Machine Learning: Adaptive Model 
for Non-Invasive Diagnostics 
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Slide courtesy A. Scheinker
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A. Scheinker, et al. "Adaptive method for 
electron bunch profile prediction." Physical 
Review Special Topics-Accelerators and 
Beams 18.10 (2015): 102801.



Optimization and Machine Learning:  Phase Space 
Tuning
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A. Scheinker, et al., "Demonstration of model-
independent control of the longitudinal phase space of 
electron beams in the Linac-coherent light source with 
Femtosecond resolution," Physical Review 
Letters 121.4 (2018): 044801.

Slide courtesy A. Scheinker
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Particle Accelerator
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Step 1: Trained a convolutional neural network (CNN) to learn the relationship between 
longitudinal phase (LPS) space images from a transverse deflecting XTCAV and 
accelerator RF settings. For a desired LPS the CNN would then give us a guess of what 
the parameter settings should be.
- CNN prediction not perfect because of interpolation
- CNN prediction limited because the system for which it has been trained changes with 

time

Step 2: Using the CNN’s output as an initial guess, apply model-independent feedback to 
continuously adjust accelerator parameters to minimize a cost, C, the difference between 
observed XTCAV image and the desired LPS distribution:



Short-Pulse Generation in the PSR
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New TargetNew Target

Presently deliver ~ 300 ns pulses

We can make shorter pulses …
at the expense of accumulated charge.

Need to understand & improve instability
damping, etc.

Thanks to
R. McCrady,
P. Roy, C. Taylor



Ion Source Upgrade:  SNS / LANL Collaboration
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New Design of the SNS RF H- Ion Source 
With RF Plasma Gun and External Antenna 

Thanks to I. Draganic

Initial installation:  H- Ion Source Test stand
Penultimate home:  H- Cockroft-Walton

Where we really want to go:  New source for complete front-end refresh



RFQ
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Thanks to I. Draganic,
R. McCrady



H- Photocathode
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Thanks to A. Alexander, J. Smedley & R. McCrady

• LANSCE source:
– electron transfer (tunneling) at wall surfaces to produce H-
– Cs increases efficiency: low barrier, easy for electrons to escape

• Photogated source:
– Use light to produce electrons at an energy where electron 

transfer is efficient
– Similar transfer process, use atomic H beam as H source
– Potential to enable pulses timed to RF phase, as with electron 

photoinjector
– First experiments in progress at ACERT using photocathode 

chamber

FY20 MFR LDRD



Diamond Cathodes
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Diamond field-emitter arrays: fabbed with Si wafer technology

Thanks to K. Nichols, H. Andrews

Array on a
cathode plug
for testing
at Argonne
Wakefield
Accelerator

YAG1 YAG2



High-Gradient Accelerator Structures
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• Material Science effort
• better understanding of RF-breakdown
• Are there better copper alloys with lower 

RF-breakdown probability? 

• RF-structures
• Design and test reference structures from regular copper (SW, waveguide 

manifold coupling)
• Design a test cavity for samples – we try to do more than DC testing
• Develop experimental capability that includes cryo-cooling with LN

• Advanced manufacturing
• Implement low-temperature machining, forming, joining and cleaning techniques
• Fabrication infrastructure: methods that do not compromise the properties of 

source materials
• In-house fabrication of newly developed RF-resonators
• Some basic research into 3D printing with copper – understanding limits, not for 

production
Courtesy F. Krawczyk



High-Gradient Accelerator Structures
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• DDSTE and the ALD for Physical 
Sciences invested $1.3M into 
purchase/installation of a 50 MW peak 
power klystron

• Klystron supports our 
3-year effort for 
sample and cavity 
testing, is also seed 
for an electron beam 
test accelerator

• Test stand for 
reduced  and =1.0 
RF-structures

Courtesy F. Krawczyk
Collaborations with SLAC, PSI-SwissFEL, UCLA



SRF Materials
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Material Tc (K)
Nb 9.26
NbTi 10
NbN 16
Nb3Sn 18.3
Nb3Ge 23.2
MgB2 39

Coating stand at MST-7

Courtesy E. Simakov,
T. Tajima

2020 MFR LDRD
“SRF Cavities:  Looking 
Beyond Niobium”

Characterize Nb3Ge 
for SRF accelerator
application



X-FELs
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Electron gun      L1             BC1         L2            BC2           L3               Undulator
(~ few MeV)               (~ 250 MeV)               (~ 2 GeV)                           (~ 12 GeV)

Electron gun      L1         BC1  Laser modulator     L2      Small chicane  Undulator
(~ few MeV)               (~ 250 MeV)                                                              (~ 12 GeV)

Need:  ~3 kA current, 0.1 m emittance, 0.01% energy spread, at 12 GeV for 42-keV photons

Conventional approach

Laser Assisted Bunch 
Compression approach

• On-crest RF acceleration makes more efficient 
use of RF and reduces space charge effects;

• C-band wakes do not seem to hurt but actually 
help by removing RF curvature;

• 12 GeV bunch compression seems to be 
possible without significant beam degradation 
due to CSR and ISR.

Thanks to P. Anisimov & B. Carlsten



DARHT and SCORPIUS
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Linear Induction Accelerators

2-axis radiography

1-2 kA, few hundred ns e- pulses

15-20 MeV



DARHT and SCORPIUS
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• LANL, with LLNL and NSTS, are working to build SCORPIUS and 
install it in the U1a facility in Nevada … 960 feet underground

Thanks to G. Dale



Accelerators in Space
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Connections: How are the auroral ionosphere and nightside
magnetosphere connected through the time-varying magnetic field?
We have magnetosphere models, but need better measurements.

Need 
~10 kJ
per shot
to “light up”
artificial 
aurora



Accelerators in Space
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Thanks to D. Nguyen



Beam-PIE
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Thanks to B. Carlsten, G. Reeves, E. Dors, M. Holloway

Sounding rocket flight planned for 2020
• Suborbital
• Single cavity, HEMT-driven
• DC electron gun



Nuclear Battery Testing (with Physical Sciences Inc.)

10/24/2019 |   31Los Alamos National Laboratory

Goal: high efficiency, compact energy converter for radioactive material,
that is scalable in size

Solution: Layered Photovoltaic/Radioactive material (α or β emitter). Each
layer is less than one α range thick, improving efficiency

Unknown: Radiation hardness of PV material versus dislocation damage.
Can characterize with proton of similar range (Few MeV α and 0.75 MeV
proton both have ~10 µm range.

Slide courtesy J. Smedley
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…and that’s not everything.



Wrap-Up and Conclusions
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• The LANSCE Mesa is a busy place these days

• Upgrade efforts for LANSCE are kicking off
– “Tank 3 effect” is helping
– Long-term view:  setting up for the next 50 years of operation

• Disparate research activities tie into LANSCE’s future
– Direct benefit from much of the R&D
– Enhanced and expanded skillsets brought to the mesa
– Increased connection with the broader accelerator community


